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Motivation

To facilitate research in prognostics, it is imperative to have 

Requirements

The testbed shall:
To facilitate research in prognostics, it is imperative to have 

a hardware testbed that mimics the complexities and 

issues encountered for a real system.

Such a system will support

• Algorithm development

• Testing and validation of prognostic tools

• Resemble a system that has real-world relevance

• Allow for repeated run-to-failure of components

• Perform run-to-failure in reasonable time

• Support monitoring of ground truth

• Collect data for state assessment• Testing and validation of prognostic tools

• Benchmarking of different approaches

• Development of metrics for prognostics

• Collection and dissemination of run-to-failure data

Goal

• Demonstrate ability to distinguish between components 

• Collect data for state assessment

• Support demonstration of prognostic solutions

• Allow control of several operational and/or environmental 

variables

• Allow quantification of uncertainty sources

• Support repeated run-to-failure within a finite budget

System

• Demonstrate ability to distinguish between components 

at different health states having similar external 

observables and then to predict the end of life

• Support repeated run-to-failure within a finite budget

• Support automated data collection during the aging

System
Testbed – Data 

Collection
Experimental setup 

• A set of Li-ion cells 

• Aging dynamics slow enough to be observable and fast enough for reasonable run-to-failure 

times (~1 month)

• Low cost

BHM

• Low cost

• May be aged either inside or outside an environmental chamber

• Programmable Charger and Electronic Load

• EIS equipment for battery health monitoring (BHM)

• Sensor suite – Voltage, Current, Temperature

• Custom switching circuitry

• Data acquisition system 

• Computer for control and analysis

Experimental Plan 
• Cells are cycled through charge and discharge under 

different load and environmental conditions set by 

the electronic load and environmental chamber 

respectively 

• Periodically EIS measurements are taken to monitor 

the internal condition of the battery

Aging

• Computer for control and analysis

the internal condition of the battery

• DAQ system collects externally observable 

parameters from the sensors

• Switching circuitry enables cells to be in the charge, 

discharge or EIS health monitoring state as dictated 

by the aging regime

Results

Algorithm Development 

The algorithms considered so far include both 

model-based as well as data-driven algorithms, for 

Sample Results

Results

example

• Relevance vector machines (RVM)

• Gaussian Process Regression (GPR)

• Particle Filters (PF, RBPF)

• Neural Networks (NN)

• Random Forest Regression

• ARIMA models

• Kalman Filters

Further algorithms will be explored and results will 

be published to disseminate findings on be published to disseminate findings on 

advantages and disadvantages of each one.

www.nasa.gov



Battery PrognosticsBattery PrognosticsBattery PrognosticsBattery Prognostics
Bhaskar Saha and Kai Goebel 

Problem

Bhaskar Saha and Kai Goebel 
Prognostics Center of Excellence, NASA ARC

Problem

(AFRL, Artist's depiction) 

Electric Propulsion Space Experiment (AFRL)

•Ammonia Arcjet onboard ARGOS 

(1999)

•Gases released from electrolyte 

Questions to be Answered

Can the current mission be completed?

• Given the health of the battery, is there enough charge left 

for anticipated load profile (within allowable uncertainty 

Beech A200 (Reg # N258AG)

•Gases released from electrolyte 

decomposition resulted in a breach of 

the battery case, releasing 

superheated gas into the unit

•Onboard generators failed to activate as 

starter was still engaged after ignition

(Courtesy: AFRL-PR-ED-TR-2001-0027) 

for anticipated load profile (within allowable uncertainty 

bounds)?

• Dominant metrics: state of charge (SOC), state of health 

(SOH)

Can future missions be completed?

• Given the health of the battery, at what point can typical 

future missions not be met?

(NASA/JPL, Artist's concept) Mars Global Surveyor

starter was still engaged after ignition

•Battery completely discharged
resulting in total electrical failure

disabling normal landing gear extension 

capability

•Landing gear failed & the plane crashed (Courtesy: NTSB, ID #SEA00LA066)

•The MGS failed Nov 2006

future missions not be met?

• Dominant metrics: end of life (EOL), state of health (SOH)

end of charge ?
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Approach

•The MGS failed Nov 2006

"We think that the failure was due to a 

software load  ... The radiator for the 

battery pointed at the sun, the 

temperature went up, and battery 

failed...”
John McNameeMars Exploration Program, NASA

Time (Long term)Time (Long term)Time (Long term)Time (Long term)Time (Long term)Time (Long term)Time (Long term)

GOAL: Develop a model that makes a prediction of 

end-of-charge and end-of-life based on rapid 

state of health (SOH) assessment

Approach
Battery Schematic

Lumped Parameter Model

Impedance = Resistance + Reactance
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Relevance Vector Machine

– State of the art in nonlinear 

probabilistic regression

– Data driven learning

– Learn degradation mode

Particle Filter

RVM

Impedance = Resistance + Reactance

•The External Voltage (E) of a battery 

is less than its Open Circuit Potential 

(Eo) whenever it is in use. 

•Losses are due to:

• Ro: Internal Resistance (IR drop), 

• Rp: Polarization Resistance

DISCHARGE CHARGE

Electrochemical Impedance 
Spectroscopy (EIS)

•Carry out a frequency sweep

•Plot Capacitive (1/ωC) v/s Resistive (R) 

component of the Reactance

•Response is different in presence of 

passivation and corrosion, providing a 

diagnostic for the health state of battery

– State of the art for nonlinear 

non-Gaussian state estimation

– Uses model to predict and data

to correct prediction

– Sequential Monte-Carlo simulations 

with Importance Sampling for 

p-step ahead predictions

PF

• Rp: Polarization Resistance

• Rc: Concentration Polarization

•These losses tend to increase as the 

current drawn from the battery 

increases. 

Concentration

polarization

IR drop

Activation polarization
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diagnostic for the health state of battery
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Polarization Curve

Ohmic resistance (Ro) and polarization 
resistance (Rp) of a Li-ion battery 
gradually increase with aging
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